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Abstract
This paper presents a modification of the dressing method for solving
new classes of multidimensional nonlinear partial differential equations
(PDE). First, we combine a hierarchy of matrix linearizable (C-integrable)
equations with a hierarchy of matrix equations integrable by inverse spectral
transformation (S-integrable equations). The solution manifold of the
associated (n+1)-dimensional nonlinear PDE has an arbitrary dependence on n
variables. This allows us to outline an algorithm for solving known integrable
equations with arbitrary forcing terms. Second, we combine two different
S-integrable hierarchies (two n-wave systems in our example). The available
solution manifold has an arbitrary dependence on two variables. Multiple-scale
expansion is useful in both cases for the purpose of simplification and revealing
physical applications of the derived nonlinear PDE. We deal with a (3 + 1)-
dimensional space of independent variables, but there is no formal restriction
on the dimension.

PACS numbers: 02.30.Jr, 02.30.Ik

1. Introduction

Study of nonlinear partial differential equations (PDE) together with their applications in
physics represents a significant area of mathematical physics. The interest in it has been
enhanced during the last few decades due to the revealing of two large solvable classes
of nonlinear PDE. These are equations integrable by inverse spectral transformation (IST)
(so-called S-integrable equations) [1–3] and linearizable (or C-integrable) equations [4–9].
Some of these equations are in turn applicable in different branches of physics, such as
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hydrodynamics, plasma physics, superconductivity and nonlinear optics. It is well known that
different versions of the dressing method are very successful tools for solving nonlinear PDE.
The most famous are the Zakharov–Shabat dressing method [10, 11] based on properties of
Volterra-type integral operators, the ∂̄-problem [12–14] based on properties of Fredholm-type
integral operators and the Sato approach [15–18] based on the properties of pseudo-differential
operators. Although all these dressing methods have been used only for PDE integrable by
IST, it has been shown [19] that there is another type of equations (maybe not integrable by
IST) which allow a properly modified dressing procedure for construction of a large manifold
of their solutions. But the technique proposed left many questions open. For instance, it is
not clear whether derived nonlinear PDE can be linearized by some substitution. Also it was
difficult to characterize the manifold of available solutions.

In this paper we replace the algebraic operator with an integral one, generalize the system
of equations introducing a set of additional parameters (independent variables of nonlinear
PDE) and significantly modify the algorithm given in [19]. This allows us to simplify the
description of PDE properties and give more information about the solution manifold as well
as relations for the classical solvable PDE (both S- and C-integrable).

Thus, the basic object is the following N × N matrix integral equation:

� + χ ≡ �(λ,µ; t) + χ(λ,µ; t) =
∫

Dν

�(λ, ν; t)U(ν, µ; t) dν ≡ � ∗ U (1)

where λ = (
λ1, . . . , λNλ

)
, µ = (

µ1, . . . , µNµ

)
and ν = (

ν1, . . . , νNν

)
are vector spectral

parameters with different lengths in general; t = (t1, . . . , tdim(t)) is a set of independent
variables of the nonlinear PDE, dim(t) may be either finite or infinite; integration is
over the whole space Dν of the appropriate spectral parameter; �, χ , � and U are
N × N matrix functions of arguments. Star means integration over the space of the
‘inner’ spectral parameter: f ∗ g ≡ ∫

Dν
f (λ1, . . . , ν)g(ν, . . . , µn) dν. We require � to

be an invertible operator; i.e. equation (1) can be solved uniquely for U. By definition,
operator A(λ, µ) is invertible if there are operators A−1

L (λ, µ) and A−1
R (λ, µ) such that∫

Dν
A(λ, ν)A−1

R (ν, µ) dν = ∫
Dν

A−1
L (λ, ν)A(ν, µ) dν = δ(λ − µ). The functions � and �

are related by means of the compatible system of linear integral–differential equations which,
however, introduce the set of variables t:

Mi ∗ � =
∑

k

Lik ∗ � ∗ Cki Cki = Cki(λ, µ; t) i = 1, 2, . . . (2)

where Mj = Mj

(
λ,µ; ∂t1, ∂t2 , . . .

)
are first order and Ljk = Ljk

(
λ,µ; ∂t1, ∂t2, . . .

)
are

arbitrary order linear differential operators with matrix coefficients depending on λ and µ. This
overdetermined system together with its compatibility condition defines � and �. Finally,
the same compatibility condition, with � defined by equation (1), results in nonlinear PDE
whose solution is expressed in terms of U.

With this preliminary discussion complete, we now derive some general equations using
the following simplified version of the system (2):

�ti = Si ∗ � ∗ Ci i = 1, 2, . . . (3)

where Si(λ, µ; t) and Ci(λ, µ; t) are known functions of t, as will be seen later. The
compatibility condition for the system (3) has the form

Si tj ∗ � ∗ Ci − Sj ti
∗ � ∗ Cj + Si ∗ � ∗ Citj − Sj ∗ � ∗ Cj ti

+ Si ∗ �tj ∗ Ci − Sj ∗ �ti ∗ Cj = 0 (4)

which is a linear system of compatible integral–differential equations for the function �.
Solving this equation, substituting the result in equation (3) and integrating it, we obtain �:

�(λ,µ; t) = ∂−1
ti

(Si ∗ � ∗ Ci)(λ, µ; t) + E(λ,µ) + Fi(λ, µ; t2, t3, . . .). (5)
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Here E is invertible operator, the functions Fi provide compatibility of the system (5). Being
invertible (owing to E), the operator � provides the unique solution to equation (1).

However, equation (4) may be given in another form after substitution of equation (1) for
� and equation (3) for �ti :

Si tj ∗ (� ∗ U − χ) ∗ Ci − Sj ti
∗ (� ∗ U − χ) ∗ Cj + Si ∗ (� ∗ U − χ) ∗ Citj

− Sj ∗ (� ∗ U − χ) ∗ Cj ti
+ Si ∗ (

Sj ∗ (� ∗ U − χ) ∗ Cj ∗ U

+ � ∗ Utj − χtj

) ∗ Ci − Sj ∗ (
Si ∗ (� ∗ U − χ) ∗ Ci ∗ U

+ � ∗ Uti − χti

) ∗ Cj = 0 (6)

which is a nonlocal equation quadratic in U. This may result in nonlinear PDE for fields
expressed in terms of U, Si and Ci . To provide for this possibility we must impose specific
dependences of the functions Si and Ci on their arguments. Thus, hereafter we use the
following relations:

Si(λ, µ; t) = δ(λ − µ) (7)

Ci(λ, µ; t) =
∫

Dν

Ai(λ, ν)p1(ν; t) dν p2(µ) + c1(λ)Bic2(µ; t) ≡ Ai ∗ p1(t)p2 + c1Bic2(t)

(8)

where A is an invertible operator, Ai ∗ Aj = Aj ∗ Ai, [Bi, Bj ] = 0 and [∗, ∗] means the
commutator of two matrices. Then equation (4) is equivalent to the following set of three
integral–differential equations for � and c2:

(� ∗ A1 ∗ p1(t))tj − (� ∗ Aj ∗ p1(t))t1 = 0 (9)

(� ∗ c1)tj B1 − (�c1)t1Bj = 0 (10)

B1c2tj − Bjc2t1 = 0 (11)

while equation (3) reads

�ti = � ∗ Ci. (12)

Equations (9) and (10) define the functions � and have to be compatible. The simple way
to provide this compatibility is by ‘splitting’ these two equations in the following way:

�tj ∗ A1 − �t1 ∗ Aj = 0 (13)

A1 ∗ ∂tj p1 − Aj ∗ ∂t1p1 = 0 (14)

Ai ∗ c1 = c1Bi. (15)

From equations (1), (12), (13) one derives the following nonlinear equation instead of (6):

� ∗ (
Utj ∗ A1 + U ∗ Cj ∗ U ∗ A1 − Ut1 ∗ Aj − U ∗ C1 ∗ U ∗ Aj

)
+ χt1 ∗ Aj − χtj ∗ A1 + χ ∗ (C1 ∗ U ∗ Aj − Cj ∗ U ∗ A1) = 0. (16)

Although the equations derived in [19] may be solved with our algorithm, they will
not be discussed in this paper. Here we consider two other examples of multidimensional
systems. The first of them (section 2) represents a combination of C- and S-integrable
(n-wave) equations. This is a (3 + 1)-dimensional system, having solutions with an arbitrary
dependence on three variables at most. Among these systems are known integrable models
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with arbitrary forcing terms. The second example (section 3) combines two S-integrable
equations (two different matrix n-wave equations) [20, 21]. Properly introduced multiple-
scale expansion of this system results in a (3 + 1)-dimensional n-wave equation. Its solutions
may have an arbitrary dependence on two variables at most. Some reductions of this system
are given. Both cases have extensions into higher dimensions.

We emphasize that we consider the problem of construction the families of solutions to
the derived nonlinear equations regardless of the completeness of their integrability.

2. The generalized hierarchy of linearizable and integrable by IST (n-wave) systems

In this section χ = 0, Aj = A ∗ · · · ∗ A︸ ︷︷ ︸
j

≡ Aj , Bj = Bj , where A(λ,µ) is an

invertible operator and B is a nondegenerate constant matrix. Applying the operator �−1 to
equation (16) from the left, one obtains

Ej = Utj ∗ A + U ∗ Aj ∗ p1p2 ∗ U ∗ A + U ∗ c1B
jc2 ∗ U ∗ A

− (
Ut1 ∗ Aj + U ∗ A ∗ p1p2 ∗ U ∗ Aj + U ∗ c1Bc2 ∗ U ∗ Aj

) = 0 (17)

where ∂ ≡ ∂t1 . We may derive a nonlinear system for the functions

u = p2 ∗ U ∗ c1 qn = p2 ∗ U ∗ An ∗ p1 vn = ∂nc2 ∗ U ∗ c1
(18)

wmn = ∂mc2 ∗ U ∗ An ∗ p1

which has the following form:

Eu;j = p2 ∗ Ej ∗ c1 = utj − ut1B
j−1 + qju − q1uBj−1 + uBjv0 − uBv0B

j−1 = 0 (19)

Eq;jn = p2 ∗ Ej ∗ An ∗ p1 = qntj
− qn+j−1t1

+ qjqn − q1qn+j−1 + uBjw0n

−uBw0(n+j−1) = 0 (20)

Ev;jn = ∂nc2 ∗ Ej ∗ c1 = vntj − vnt1B
j−1 + [vn+1, B

j−1] + wnju − wn1uBj−1

+ vnB[Bj−1, v0] = 0 (21)

Ew;jmn = ∂mc2 ∗ Ej ∗ An ∗ p1 = wmntj − wm(n+j−1)t1
− Bj−1w(m+1)n + w(m+1)(n+j−1)

+ wm+j qn − wm1qn+j−1 + vmBjw0n − vmBw0(n+j−1) = 0. (22)

The number of fields in this system can be reduced (we rearrange equations in an order that
emphasizes the relation to the classical systems):

Eq;jn(j = 2, n = 0, . . . , 3 and j = 3, n = 0) Ev;30 − BEv;20 − Ev;20B Eu;2
Ew;400 − Ew;202 − BEw;201 − B2Ew;200(n = 0, . . . , 3) (23)

Ew;30n − Ew;20(n+1) − BEw;20n(n = 0, . . . , 3)

or, in explicit form (wn ≡ w0n, v ≡ v0),

qntj
− qn+j−1t1

+ qjqn − q1qn+j−1 + uBjwn − uBwn+j−1 = 0
(24)

j = 2 n = 0, . . . , 3 and j = 3 n = 0

vt3 − Bvt2 − vt2B + Bvt1B − [v, B]B[v, B] − Bw2u − w2uB + w3u + Bw1uB = 0 (25)

ut2 − ut1B + q2u − q1uB + uB[B, v] = 0 (26)(
∂t4 − B2∂t2

)
w0 − (

∂t2 − B∂t1

)
(w2 + Bw1) + (Bw1 − w2)q2 + B(Bw1 − w2)q1

+ (w4 − B2w2)q0 + [B, v]Bw2 + B[B, v]Bw1 − [B2, v]B2w0 = 0 (27)
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∂t3 − B∂t2

)
wn − (

∂t2 − B∂t1

)
wn+1 + (w3 − Bw2)qn − (w2 − Bw1)qn+1

+ [B, v]B(wn+1 − Bwn) = 0 n = 0, . . . , 3. (28)

Thus, this system is (3 + 1)-dimensional. We see that this is a subsystem of a more general
system (19)–(22). The important fact for the integrability of equations (24) and (28) is that
missed equations do not impose any constraint since they are commuting flows for appropriate
equations of the system (24)–(28). For instance, the first equation (19) gives us the evolution
of u with respect to tj , j � 2. Direct calculation shows that ut2tj = utj t2 . Thus we pick out
just equation (19) with j = 2; see equation (26).

Consider several reductions of the system (24)–(28). We start with those reductions which
lead to classical integrable systems.

Reduction 1. A (2 + 1)-dimensional matrix n-wave equation. Let expression (8) for Ci have
only the second term; thus wn = qn = u = 0 and the following reduction is possible in
equation (25): vβα = −v̄αβ, β > α, tj → itj . This equation becomes a (2 + 1)-dimensional
n-wave equation for off-diagonal elements of matrix v. Other equations disappear.

Reduction 2. A (2+1)-dimensional matrix C-integrable system. Let expression (8) for Ci have
only the first term. Thus wn = v = u = 0 and we stay with equation (24) for qn. One can
show that qn can be expressed in terms of solutions f of the linear PDE ft2t2 = ft1t3 by matrix
Hopf substitution [7]. In fact, in this case �(λ,µ; t) = ∂−1

tj
(�∗A∗p1(t))(λ)p2(µ)+δ(λ−µ)

and equation (1) becomes

� = ∂−1
tj

(� ∗ Aj ∗ p1(t))p2 ∗ U + U.

Applying operators ∗Aj ∗ p1(t) and p2∗ to these equations from the right and from the left
respectively, one gets

qj = p2 ∗ U ∗ Aj ∗ p1(t) = (
I + ∂−1

tj
(p2 ∗ � ∗ Aj ∗ p1(t))

)−1
p2 ∗ � ∗ Aj ∗ p1(t).

Let f = I + ∂−1
tj

(p2 ∗ � ∗ Aj ∗ p1(t)). Then the above linear equation for f may be derived
from (13) and (14). Let us change the independent variables:

∂t1 = ∂t + ∂y ∂t3 = ∂t − ∂y ∂t2 = ∂x ∂t4 = ∂z. (29)

Then the equation for f becomes a linear wave equation with two space coordinates.

Reduction 3. An ‘almost’ C-integrable system. We illustrate the simple particular
approximation of the above system corresponding to an ‘almost’ linearizable system with
a small perturbation coming from the S-integrable part. This happens if the second term in
equation (8) is small and B is proportional to the small parameter ε: c1 = εc̃1, c2 = εc̃2,
pi ∼ 1, B = εB̃, ε � 1. Then qn ∼ 1, u ∼ wnm ∼ ε, vn ∼ ε2. We expand the above
system in powers of ε, keeping the term of order ε3 in equation (24) and leading terms in other
equations. Equation (25) can be disregarded for this case. Thus one has

qntj
− qn+j−1t1

+ qjqn − q1qn+j−1 − ε3uB̃wn+j−1 = 0

j = 2 n = 0, . . . , 3 and j = 3 n = 0 (30)

ut2 + q2u = 0 (31)

∂t4w0 − ∂t2w2 + w4q0 − w2q2 = 0 (32)

∂t3wn − ∂t2wn+1 + w3qn − w2qn+1 = 0 n = 0, . . . , 3. (33)

The nonlinearizable perturbation is related to the last term in equation (30). In terms of the
independent variables x, y, t (29), this system may be transformed to the following one:
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qntt = qnxx + qnyy + [q2qn − q1qn+1]x + (∂t + ∂y)[q2qn+1 − q3qn]

− ε3(uB̃wn+1)x n = 0, 1, 2 (34)

q2x − q3t − q3y + q2q2 − q1q3 − ε3uB̃w3 = 0 (35)

ux + q2u = 0 (36)

∂zw0 − ∂xw2 + w4q0 − w2q2 = 0 (37)

(∂t − ∂y)wn − ∂xwn+1 + w3qn − w2qn+1 = 0 n = 0, . . . , 3. (38)

The first equation is a variant of the nonlinear wave equation with two space variables and
nonlinearity depending on some other fields, satisfying equations (35) and (38). The third
space variable z appears only due to these additional fields; see equation (37). If ε = 0, then
the system is linearizable by Hopf substitution (see reduction 2).

In a similar way one can introduce an ‘almost’ S-integrable system. We will not do that
in this paper.

Reduction 4. A nonlinear n-wave equation with an arbitrary forcing term. This example is
based on equation (25):

vt3 − Bvt2 − vt2B + Bvt1B − [v, B]B[v, B] = F(t) (39)

F(t) = Bw2u + w2uB − w3u − Bw1uB. (40)

The off-diagonal part of this equation is a (2 + 1)-dimensional n-wave equation with the right-
hand side expressed in terms of the functions uj and wj . It is very important that wj has an
arbitrary dependence on three variables (see the next subsection) depending on an arbitrary
function (say, f ) of three variables. Although this dependence is implicit, we denote this fact
by the formula wj(t) = wj(t, f (t1, t2, t3)) (f is an arbitrary function of its arguments) to
emphasize explicitly that the function f is the only one for all wj (or more exactly: only one
of the functions wj may be an arbitrary function of three variables). Since equation (39) is
three-dimensional, this means that formally for any particular forcing term F(t) one can find
a function f (and consequently wj ) solving equation (40). In this case we are not concerned
about other equations of the system (24)–(28). In particular, F(t) may be a nonlinear function
of v and (perhaps) its derivatives: F(t) = H

(
v, vt1 , vt2 , . . . , vti tj , . . . , vη1 , vη2 , . . .

)
, where

η = (η1, . . . , ηdim(η)) is a list of additional variables. Of course this significantly complicates
the algorithm for solution construction. The dimension of this type of nonlinear PDE is defined
by the dimension of the appropriate S-integrable system as well as by the additional dimension
dim(η) introduced with the function H.

We will mention equation (40) in the next subsection, where the solution manifold for the
equations (24) and (28) is discussed. Here we should say that solutions to equation (39) may
be found only numerically and details are not given in this paper.

Reduction 5. A linear wave equation with an arbitrary forcing term. Like in the previous case,
one could take equation (24) and consider a C-integrable equation with an arbitrary forcing
term. But linear equations with an arbitrary forcing term are more applicable in physics. It
is interesting that equation (24) can be approximated by a linear equation with the forcing
expressed in terms of wj if the small parameter ε is properly introduced. Let pi ∼ ε, ci ∼ 1.
Then qj ∼ ε2, u ∼ w ∼ ε and, in leading order (ε2), equation (24) has the form

qntj
− qn+j−1t1

= Fn,j (t) (41)
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Fn,j (t) = uBwn+j−1 − uBjwn. (42)

In terms of the variables x, y, t (29) the equation for q = q0 has the following form:

qtt − qxx − qyy = F̃ (x) x = (x, y, t) (43)

F̃ (x) = (∂t + ∂y)(uB3w0 − uB2w1) + ∂x(uB2w0 − uBw1). (44)

To find wj(t, f (t)) for given F̃ one has to solve two-dimensional (since derivatives ∂t and ∂y

appear only in linear combination) PDE (44). This is a rather complicated procedure. But if
we take B ∼ ε and ∂tj ∼ ε, then the leading part of equation (41) will be of order ε3 and the
expression for F̃ will be simplified:

F̃ (x) = −(uBw1)x; (45)

i.e. one arrives at the first-order ordinary differential equation for w1. Similarly to in the
previous reduction, one can take F̃ as a nonlinear function of q and (perhaps) its derivatives:
F̃ (x) = H(q, qx, . . . , qη1 , qη2 , . . .), where η is a list of additional variables (see reduction 4).
The dimension of PDE depends on both the dimension of the appropriate linear operator and
the additional dimension dim(η) introduced by the function H. Equations (44) and (45) will
be mentioned in the next subsection, but the complete procedure of solution construction is
beyond the scope of this paper.

2.1. Construction of solutions

At the beginning of this subsection we show how rich the solution manifold is. Let us represent
equation (1) in the following form:

U = � − ∂−1
t1

[� ∗ A ∗ p1(t)]p2 ∗ U − ∂−1
t1

[� ∗ c1c2(t)] ∗ U (46)

where we substitute the expression for � following from equation (12):

�(λ,µ; t) = (
∂−1
x1

� ∗ C1
)
(λ, µ; t) + δ(λ − µ). (47)

c2(t) is defined by equation (11) and depends on an arbitrary function of a single independent
variable, which is reflected by the following formula:

c2(µ; t) =
∫

�k

ek
∑

i Bi ti c20(µ; k) dk (48)

where k is some (complex) parameter. The function �∗ c1 is defined by equation (10) and has
an arbitrary dependence on a single independent variable as well. The function � ∗ A ∗ p1

is defined by equation (9) and consequently has an arbitrary dependence on two variables. In
fact, let us write out several equations with variables t1, t2, t3:

(� ∗ A ∗ p1)t2 = (� ∗ A2 ∗ p1)t1 (� ∗ A2 ∗ p1)t2 = (� ∗ A3 ∗ p1)t1

(� ∗ A ∗ p1)t3 = (� ∗ A3 ∗ p1)t1 . (49)

This is a three-dimensional complete system of three equations. The linear equation
for ϕ = � ∗ A ∗ p1 reads ϕt2t2 = ϕt1t3 which has the solution ϕ(λ; t) =∫
Dk

ϕ0(λ; k1, k2) ei
∑3

j=1 kj tj δ
(
k2

2 − k1k3
)

dk, k = (k1, k2, k3); i.e. the solution has an arbitrary
function ϕ0(λ; k1, k2) of two variables k1 and k2. Integration is over the three-dimensional
space of the real vector parameter k.

The formulae for functions u, v, qj and wj have the following terms and factors:

h11 = p2 ∗ �(t) ∗ c1 h12 = p2 ∗ ∂−1
t1

[�(t) ∗ c1c2(t)] (50)
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h21 = c2 ∗ �(t) ∗ c1 h
j

22 = p2 ∗ �(t) ∗ Aj ∗ p1(t) (51)

h23 = c2 ∗ ∂−1
t1

[�(t) ∗ c1c2(t)] h24 = p2 ∗ ∂−1
t1

[�(t) ∗ A ∗ p1(t)]
(52)

h
j

31 = c2 ∗ �(t) ∗ Aj ∗ p1(t) h32 = c2 ∗ ∂−1
t1

[�(t) ∗ A ∗ p1(t)].

Thus we need to realize the functional freedom of these expressions. For this purpose
we prove a more general statement; namely, we show explicitly that if f (λ; t) and g(λ; t)

have an arbitrary dependence on n1 and n2 independent variables ti respectively, then
h(t) = f (t) ∗ g(t) may have an arbitrary dependence on at most n1 + n2 variables ti . This
can be easily done for functions having, for instance, Fourier transformations. Let f (λ; t)

be an arbitrary function of n1 parameters tj , j = 1, . . . , n1 and g be an arbitrary function of
n2 � n1 parameters tj , j = n1 + 1, . . . , n1 + n2, where λ is a real vector spectral parameter
whose length is n1. Let f and g be taken in the form

f (λ; t) =
∫

�k

f0(k̃)

(
n1∏

m=1

δ(λ − km)

)
exp


i

dim(t)∑
j=1

kj tj


 (

dim(t)∏
m=n1+1

δ
(
Df

m(k)
))

dk

k̃ = (
k1, . . . , kn1

)
(53)

g(λ; t) =
∫

�q

exp


i

dim(t)∑
j=1

qj tj


 (

n1∏
m=1

δ
(
Dg

m(q)
))(

dim(t)∏
m=n1+n2+1

δ
(
Dg

m(q)
))

g0(λ; q̃) dq

q̃ = (
qn1+1, . . . , qn1+n2

)
. (54)

Here �k and �q are dim(k) = dim(t)-dimensional planes of real vector parameters k and q
respectively; D

f
n and D

g
n are dispersion relations such that

det

∣∣∣∣∣∂
(
D

f

n1+1 · · · Df

dim(t)

)
∂
(
kn1+1 · · · kdim(t)

)
∣∣∣∣∣ �= 0 det

∣∣∣∣∣∂
(
D

g

1 · · · Dg
n1D

g

n1+n2+1 · · · Dg

dim(t)

)
∂
(
k1 · · · kn1kn1+n2+1 · · · kdim(t)

)
∣∣∣∣∣ �= 0.

Then one can carry out integration over λ inside the expression h = f ∗ g:

h(t) =
∫

�k

∫
�q

f0(k̃) exp


i

dim(t)∑
j=1

(kj + qj )tj


 (

dim(t)∏
m=n1+1

δ
(
Df

m(k)
)) (

n1∏
m=1

δ
(
Dg

m(q)
))

×
(

dim(t)∏
m=n1+n2+1

δ
(
Dg

m(q)
))

g(k̃; q̃) dk dq

k̃ = (
k1, . . . , kn1

)
q̃ = (

qn1+1, . . . , qn1+n2

)
(55)

i.e. the function h(t)

h(t) =
∫

�k̃

∫
�q̃

f0(k̃)g(k̃, q̃) ei�(k̃,q̃,t) dk̃ dq̃

has an arbitrary dependence on n1 + n2 variables.
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In our case c2 is taken for f and c20(µ; k) = δ(µ − k). We see that the function u may
have an arbitrary dependence on a single variable (due to the terms h11 and h12) and two
variables (due to h24); v may have an arbitrary dependence on two variables (due to the terms
h21 and h23) and three variables (due to h24); qj may have an arbitrary dependence on a single
variable (due to h12), two variables (due to the term h

j

22) and three variables (due to h24);
finally, wj may have an arbitrary dependence on two variables (due to h23) and three variables
(due to h

j

31 and h32).
Now we outline the algorithm for construction of solutions to the system (24)–(28). First,

one needs to solve the system (13)–(15) for the functions c1, �, p1 and c2:

�(λ,µ; t) =
∫

�k

∫
Dν

�0(λ, ν; k) eη1(ν;k,t)φ0(ν, µ; k) dk dν (56)

p1(λ; t) =
∫

�k

∫
Dν

p0(λ, ν; k) eη2(ν;k,t)p10(ν; k) dk dν (57)

A ∗ c1 = c1B (58)

where ηi(µ; k, t) = ∑4
j=1 ηij (µ; k)tj , i = 1, 2, [ηij , ηik] = 0, det(ηij ) �= 0. Parameter k

is complex in general; integration is over the whole complex plane �k of this parameter.
Functions �0, p10 and c20 are arbitrary; functions φ0 and p0 solve the following system:

η1j (ν; k)φ0(ν, µ; k) = η1(j−1)(ν; k)

∫
Dν1

φ0(ν, ν1; k)A(ν1, µ) dν1 (59)

p0(λ, ν; k)η2j (ν; k) =
(∫

Dν1

A(λ, ν1)p0(ν1, ν; k) dν1

)
η2(j−1)(ν; k) j = 2, 3, . . . .

(60)

Functions ηj1 and ηj2 (j = 1, 2) are arbitrary, while ηjn with n > 2 satisfy the following
dispersion relations providing compatibility of the equations (59) and (60) with different j :

η−1
1(j−1)η1j = η−1

1(j−2)η1(j−1) η2j η
−1
2(j−1) = η2(j−1)η

−1
2(j−2) j = 3, 4. (61)

We write equation (47) in the explicit form

�(λ,µ; t) = δ(λ − µ) + ∂−1
t1

[∫
Dν1

∫
Dν2

�(λ, ν1; t)A(ν1ν2)p1(ν2; t) dν1 dν2

]
p2(µ)

+ ∂−1
t1

[∫
Dν1

�(λ, ν1; t)c1(ν1) dν1Bc2(µ; t)

]
. (62)

Next, we find U from (1): U = �−1 ∗ � (we write �−1
L ≡ �−1). In general, the

operator �−1 can be constructed only numerically, unless �0 is degenerate (�0(λ, µ; k) =∑
n �1n(λ)�2n(µ; k)). In this case �−1 may be found analytically, following the procedure

proposed, for instance, in [14], where the ∂̄-problem with a degenerate kernel has been
solved. Of course, this structure of �0 significantly reduces the solution manifold, since
the expressions for hnm and h

j
nm given by (50)–(52) lose their arbitrary dependence on the

variables ti . For instance, this structure may not be used for solving equations with reductions
4 and 5 (section 2, equations (39) and (45)). Of particular interest is the sub-manifold of
solutions corresponding to �ij and c20 taken in the form �2n(µ; k) = ϕ2n(µ)δ(k − an),



6566 A I Zenchuk

c20(µ; k) = ∑
n c21n(µ)δ(k − bn), where an and bn are (complex) constants. In the limit of

S-integrable systems, this is a manifold of solitary wave solutions.
Similarly, equations (59) and (60) can be solved numerically, unless A has the following

structure: A(λ,µ) = A0(λ, µ) +
∑

j Aj1(λ)Aj2(µ), where operator A0 is invertible with a

known analytical form for A0
−1
R . For instance, A0(λ, µ) = δ(λ − µ).

Following the above discussion, we can make some points about reductions 4 and 5 of the
previous subsection. We have one of equations (40), (44) and (45) relating functions wj with
a given function F(t). This equation fixes the dependence on all parameters ti in the functions
wj . Thus we have to solve equation (46) together with one of these equations and finally find
U(µ; t) and �0(λ, ν; k). This problem is related to Fredholm-type integral equations with
nondegenerate kernels and transcendental algebraic equations. Consequently it can be solved
only numerically. But the advantage of these calculations is that the procedure is reduced to
operations with spectral parameters instead of operations with independent variables and the
associated difficulties are not significantly affected by the dimension dim(t).

Now we present an example of a simple solution with N = 3. Let us take the following
solution of the system (11), (13)–(15):

B = αB̃ B̃ = 2 diag(1,−1, 2) A(λ, µ) = A0(µ)δ(λ − µ)

A0(µ) = (1 − µ + α)B̃ c2(µ) = α2 e
∑

n Bntnc20(µ) (63)

�(λ,µ; t) = �10(λ)�20(µ) e
∑

n A0(µ)ntn p0(µ; t) = α1 e
∑

n A0(µ)ntnp00(µ)δ(µ − b).

Arbitrary functions of the spectral parameter in these expressions are taken such that each
of the matrices u, q0, v and w0 has only two nonzero elements: �10(λ) = λ,�20(µ) = I ,
p2(µ) = α1δ(µ − 1) diag(0, 1, 1), c20(µ) = δ(µ − 1) diag(1, 1, 0),

p00(µ) = δ(µ − 2)


0 0 −1

0 0 0
1 0 0


 c1(λ) = α2δ(λ − 1)


 0 0 1

0 0 0
1 0 0




Thus the nonzero elements of matrices u, q0, v, w0 are the following:

u31 = 6α1α2

6 eη1 + α2
1α

2
2 eη2

u33 = − 2α1α
2
2

6 eη3 + α2
1α

2
2 eη3+η2−η1

q031 = 6α2
1

6 eη4 + α2
1α

2
2 eη4+η2−η1

q033 = 2α2
1α

2
2

6 eη1−η2 + α2
1α

2
2

v11 = 3α2
1α

2
2

6 eη1−η2 + α2
1α

2
2

v13 = 6α2
2

6 eη3−η1 + α2
1α

2
2 eη3+η2−2η1

w011 = 3α3
1α2

6 eη4−η2 + α2
1α

2
2 eη4−η1

w013 = − 6α1α2

6 e−η2 + α2
1α

2
2 e−η1

η1 = −4α(t1 + 4α(t2 + 4α(t3 + 4αt4)))

η2 = 2((3α − 2)t1 + 2((2 − 4α + 3α2)t2 + 2((−2 + 6α − 6α2 + 3α3)t3

+ 2(2 − 8α + 12α2 − 8α3 + 3α4)t4)))

η3 = −8α(t1 + α(3t2 + 2α(5t3 + 18αt4)))

η4 = −8(α − 1)(t1 + 4(α − 1)(t2 + 4(α − 1)(t3 + 4(α − 1)t4))).

Parameters α1 and α2 mark C- and S-integrable parts of the solution respectively. We see that
q033 and v11 are solitons, while all other functions are unbounded in some direction. Thus
reduction 3 (see section 2, equation (34); in our example it corresponds to α = α2 = ε � 1
and α1 = 1) may not be applied to this solution over the whole (3 + 1)-dimensional space; but
it may be applied in those regions where vαβ ∼ ε2, uαβ ∼ w0αβ ∼ ε and q0αβ ∼ 1.
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3. On the n-wave interaction in (3 + 1) dimensions

In this section we consider equations (7) and (15) with χ �= 0 and p1 = p2 = 0. Since �

appears only as � ∗ c1, it is convenient to apply operator ∗c1 to equations (1) from the right.
We write the starting system of equations in the form

�̃ + χ̃ = � ∗ Ũ Ũ = U ∗ c1 χ̃ = χ ∗ c1 (64)

�tj = �̃Bjc2 (65)

∂tj �̃ = ∂t1�̃Bj B1 = I (66)

c2xj
= Bjc2x1

(67)

where I is the identity matrix, Bi are diagonal matrices. Let

χ̃t1(λ; t)Bj − χ̃tj(λ; t) = χ̃(λ; t)bj (68)

where bj are constant N × N diagonal matrices. We will need the following notation:
V0 = c2 ∗ Ũ and V1 = c2t1 ∗ Ũ . The nonlinear equation (16) takes the following form after
applying operator ∗c1 to it from the right:

� ∗ (
∂tj Ũ − ∂t1ŨBj + Ũ [Bj , V0]

)
+ χ̃(bj − [Bj , V0]) = 0. (69)

Now assume that det(bj − [Bj , V0]) �= 0 for all j and use the two equations (69) with indices
j and k, j �= k, to eliminate the function χ̃ . Applying operator c2 ∗ �−1∗ to the resulting
equation from the left we obtain(
∂tkV0 − ∂t1V0Bk + [V1, Bk] + V0[Bk, V0]

)
(bk − [Bk, V0])−1

= (
∂tj V0 − ∂t1V0Bj + [V1, Bj ] + V0[Bj , V0]

)
(bj − [Bj , V0])−1. (70)

To clarify the structure of this equation we note that this is a combination of equations

∂tkV0 − ∂t1V0Bk + [V1, Bk] + V0[Bk, V0] = 0 k > 1

which is a hierarchy of (2 + 1)-dimensional matrix n-wave equations for off-diagonal elements
of V0 (see, for instance, [21]):

∂tk [B2, V0] − ∂t2 [Bk, V0] − B2∂t1V0Bk + Bk∂t1V0B2 + [[B2, V0], [Bk, V0]] = 0 k > 2.

But our system cannot be separated into a set of equations from this list because of the term
χ̃ in equation (64).

Next, let us introduce different scales for the variables tk, V0, V1: ∂tk → ε∂tk , V0 =
εv, V1 = ε2v1. Keeping only leading terms (which are of order ε2), we get from equation (70)

Ek ≡ vt1

(
Bjb

−1
j − Bkb

−1
k

)
+ vtk b

−1
k − vtj b

−1
j

+ [v1, Bk]b−1
k − [v1, Bj ]b−1

j − v[v, Bj ]b−1
j + v[v, Bk]b−1

k = 0. (71)

Combining equations Ek = 0 and En = 0, k �= n, one can eliminate the function v1 and write
down an equation for the off-diagonal elements of v:

Ek

(
Bnb

−1
n − Bjb

−1
j

) − En

(
Bkb

−1
k − Bjb

−1
j

)
+ Bj(Ek − En)b

−1
j − BnEkb

−1
n BkEnb

−1
k = 0.

(72)

Let j = 2, k = 3, n = 4, ∂tj → i∂tj ; Bj and bj are real matrices. We write the corresponding
equation in the following form:

4∑
τ=1

sταβ∂tτ vαβ − i
∑

γ :γ �=α �=β

Tαγβvαγ vγβ = 0 α �= β (73)
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where sταβ and Tαγβ are constants, expressed in terms of the elements of the matrices Bj and
Pj = (bkbn)

−1:

skαβ = [(Bn)β − (Bn)α](Pj )β − [(Bj )β − (Bj )α](Pn)β k > 1 (74)

s1αβ = −
4∑

i=2

(Bi)αsiαβ (75)

Tαγβ =
4∑

i=2

[(Bi)β − (Bi)γ ]siαβ . (76)

Thus we have 2 × 3 × N arbitrary parameters which are elements of the diagonal matrices Bj

and Pj (N � 3; otherwise nonlinearity disappears from the system).
Since the fields vαβ are complex in general, one can conjugate equation (73) and the system

of equations for conjugated fields v̄αβ . Because of this, it may be convenient to introduce
different fields wαβ via the formulae

vαβ = wαβ β > α vαβ = w̄αβ β < α (77)

(these equations do not establish any relation among the functions vαβ!) and write
equation (73) in terms of these fields:

4∑
τ=1

sταβ∂tτ wαβ − i
∑

γ :α<γ<β

Tαγβwαγ wγβ − i
∑

γ :α<β<γ

Tαγβwαγ w̄γβ

− i
∑

γ :γ<α<β

Tαγβw̄αγ wγβ = 0 α < β (78)

4∑
τ=1

sταβ∂tτ w̄αβ − i
∑

γ :α>γ>β

Tαγβw̄αγ w̄γβ − i
∑

γ :γ>α>β

Tαγβwαγ w̄γβ

− i
∑

γ :γ<β<α

Tαγβw̄αγ wγβ = 0 α > β (79)

Conjugate the last equation:

4∑
τ=1

sταβ∂tτ wαβ + i
∑

γ :α>γ>β

Tαγβwαγ wγβ + i
∑

γ :γ>α>β

Tαγβw̄αγ wγβ

+ i
∑

γ :γ<β<α

Tαγβwαγ w̄γβ = 0 α > β (80)

Thus the general system of nonlinear PDE is formed by equations (78) and (80).
Now we consider several reductions with the following abbreviated form for the linear

differential operator:

Lαβ =
4∑

τ=1

sταβ∂tτ . (81)

1. Reduction to the classical (2 + 1)-dimensional n-wave equation. Let Pn = Bn,
which reduces the number of arbitrary parameters to 3 × N . Then for coefficients
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of equation (73) we get

skαβ = (Bj )α(Bn)β − (Bn)α(Bj )β s1αβ = 0 Tαγβ =
4∑

i=2

[(Bi)β − (Bi)γ ]siαβ

(82)

i.e. equation (73) becomes the usual S-integrable (2+1)-dimensional n-wave system [21].
2. Reduction to the system with real fields. Let vαβ = iwαβ , where wαβ are real functions.

Equation (73) reads
4∑

τ=1

sταβ∂tτ wαβ +
∑

γ :γ �=α �=β

Tαγβwαγ wγβ = 0 α �= β. (83)

3. The particular example of six-wave interaction. Consider the n-wave system composed
of equations (78) and (80). Let N = 3; equations (78) and (80) result in a system of six
equations:

L12w12 = iT132w13w̄32 L13w13 = iT123w12w23 L23w23 = iT213w̄21w13 (84)

L21w21 = −iT231w̄23w31 L31w31 = −iT321w32w21 L32w32 = −iT312w31w̄12.

(85)

Thus equations (84) and (85) compose a complete system describing the particular case of
six-wave interaction. Note that the formulae for w21, w31 and w32 are known only in terms of
their complex conjugate values due to the definitions (77).

3.1. Construction of solutions

In general, this section is similar to section 2.1, but has different features.
The general solution to the nonlinear system can be represented in the form

Ũ (t) = �̃(t) + χ̃(t) − ∂−1
t1

[�̃(t)c2(t)] ∗ Ũ (t) (86)

where �̃, c2 and χ̃ are solutions of equations (66), (67) and (68) respectively. Thus these
functions have an arbitrary dependence on a single variable and the field V0 = c2 ∗ Ũ has an
arbitrary dependence on two variables at most, due to the terms

c2 ∗ � c2 ∗ χ c2 ∗ ∂−1
t1

[� ∗ c1c2] (87)

(in accordance with section 2.1).
Below we give the algorithm for construction of the function V0, which is a solution of

the equation (70). Let us take solutions of equations (66) and (68) in the form

�̃(λ; t) =
∫

�k

�̃0(λ, k) ek
∑

n Bntn dk (88)

c2(λ; t) =
∫

�k

ek
∑

n Bntnc20(λ, k) dk (89)

χ̃ (λ; t) =
∫

�k

χ̃0(λ; k) e
∑

n An(k)tn dk A1(k)Bj − Aj(k) = bj . (90)

We integrate equation (65) to find � (j = 1; remember that B1 = I ):

�(λ,µ) =
∫

�k

∫
�q

�̃0(λ; k) e(k+q)
∑

n Bntnc20(µ, q)
dk dq

k + q
+ δ(λ − µ). (91)
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Thus

Ũ (λ) = �̃(λ) −
∫

�k

∫
�q

�̃0(λ; k) e(k+q)
∑

n Bntnφ(q)
dk dq

k + q
+ χ̃(λ) φ = c20 ∗ Ũ (92)

and

V0 = c2 ∗ Ũ . (93)

The unknown function φ, related to Ũ , can be found only numerically in the general case,
unless the functions �̃(λ, k) are degenerate [14]: �̃(λ, k) = ∑

n �1n(λ)�2n(k). Of course,
this structure destroys the arbitrary dependence on two variables in expressions (87). In
particular, �̃(λ, k) = ∑

n ϕn(λ)δ(k − an), c20(λ; k) = ∑
n c2n(λ)δ(k − bn) with (complex)

constants ak, bk gives solitary wave solutions in the limit of classical S-integrable systems.
We present a simple example of a solution. Let N = 3, λ, µ and ν be real

parameters, Dλ = Dµ = Dν = (−∞,∞), B2 = diag(1, 1,−1), B3 = diag(1,−1,−1),
B4 = diag(−1,−1,−1), χ̃ (λ) = χ0(λ) e

∑
n rntn (thus bj = r1Bj − rj ), r1 = B2

1 = I, rj =
2B2

j , j > 1, c1(λ) = λ, c20(λ; q) = diag(e−4λ2π , e−λ2π , e−4λ2π )δ(q − 1), �0(λ, µ; k) =
�01(λ)�02(µ)δ(k−1), �02(µ) = µ diag(e−9µ2π , e−µ2π , e−9µ2π ) and �01(λ) = χ0(λ) = α1II ,
where II is a 3 × 3 matrix of units (i.e. independent of λ). Then V0 can be found explicitly:

V0 = d(t) ×
 2 e4(t2+t3)(1 + 54 et2+t3+3t4π) 54 e2(2t2+t3)(1 + 2 et2+3(t3+t4)π) 2 e2(t2+t3)(1 + 54 e3(t2+t3+t4)π)

4 e2(2t2+t3)(1 + 54 et2+t3+3t4π) 108 e4t2(1 + 2 et2+3(t3+t4)π) 4 e2t2(1 + 54 e3(t2+t3+t4)π)

2 e2(t2+t3)(1 + 54 et2+t3+3t4π) 54 e2t2(1 + 2 et2+3(t3+t4)π) 2(1 + 54 e3(t2+t3+t4)π)




d(t) = α1/(α1 + 54α1 e4t2 + α1 e4(t2+t3)) + 216 e2(−t1+t2+t3+t4)).

As regards the multiple-scale expansion of equation (70), given by equations (71), one should
make the replacement tj → εtj in formulae (88)–(93) and take α1 = ε. Thus V0 ∼ ε.
In addition, one needs to introduce an imaginary unit, tk → itk , to produce a solution of
equation (73) and guarantee finiteness of V0 in the (3 + 1)-dimensional space of the parameter
t (or equations (84) and (85) since N = 3).

4. Conclusions

Working with dressing methods we underline two directions: (a) increase of the dimension
of solvable nonlinear PDE and (b) providing a rich class of solutions of them. The nonlinear
PDE derived with our algorithm allow an infinite set of commuting flows corresponding to
different parameters tj . Since general equations are rather complicated (see equations (24),
(28) and (70)), a reasonable problem is the construction of reductions of them that would show
physical applications of these systems (see reductions 1, 2, 4 in section 2). Another approach
is multiple-scale expansion of the general systems (see reductions 3, 5 in section 2 and
section 3). For instance, this reveals a (3 + 1)-dimensional n-wave system (see equation (73)).

We should emphasize the importance of reductions 4 and 5 in section 2 (see
equations (39) and (45)), which may be used for any S- or C-integrable system. The possibility
of introducing an arbitrary forcing term is due to the presence of both S- and C-integrable
parts in formula (8), since the fields wj join functions coming from S- and C-integrable
parts. Taking the forcing term as a function of the fields (v in the equation (40) or q in
equation (45)), one enriches the manifold of solvable equations, although this significantly
complicates the solution construction.

Our first example combining S- and C-integrable systems seems to have enough freedom
for providing a full description of a solution manifold. One should to use this freedom
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properly, which is not simple problem. The second example (section 3) contrasts with the first
one. Remember that our algorithm supplies solutions with an arbitrary dependence on two
independent variables at most in this case. Obviously, this is not enough for providing a full
description of a (3 + 1)-dimensional solution manifold.
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